Distinct roles for cysteine cathepsin genes in multistage tumorigenesis.

نویسندگان

  • Vasilena Gocheva
  • Wei Zeng
  • Danxia Ke
  • David Klimstra
  • Thomas Reinheckel
  • Christoph Peters
  • Douglas Hanahan
  • Johanna A Joyce
چکیده

Multiple types of degradative enzymes, including cathepsins of the cysteine protease family, have been implicated in the regulation of angiogenesis and invasion during cancer progression. Several cysteine cathepsins are up-regulated in a mouse model of pancreatic islet cell carcinogenesis (RIP1-Tag2), and tumor progression is impaired following their collective pharmacologic inhibition. Using null mutations of four of the implicated cysteine cathepsins, we have now dissected their individual roles in cancer development. Mutants of cathepsins B or S impaired tumor formation and angiogenesis, while cathepsin B or L knockouts retarded cell proliferation and tumor growth. Absence of any one of these three genes impaired tumor invasion. In contrast, removal of cathepsin C had no effect on either tumor formation or progression. We have identified E-cadherin as a target substrate of cathepsins B, L, and S, but not cathepsin C, potentially explaining their differential effects on tumor invasion. Furthermore, we detected analogous increases in cathepsin expression in human pancreatic endocrine neoplasms, and a significant association between increased levels of cathepsins B and L and tumor malignancy. Thus individual cysteine cathepsin genes make distinctive contributions to tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis.

Tumors develop through successive stages characterized by changes in gene expression and protein function. Gene expression profiling of pancreatic islet tumors in a mouse model of cancer revealed upregulation of cathepsin cysteine proteases. Cathepsin activity was assessed using chemical probes allowing biochemical and in vivo imaging, revealing increased activity associated with the angiogenic...

متن کامل

Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer.

Increases in protease expression and activity are associated with malignant progression and poor patient prognosis in a number of human cancers. Members of the papain family of cysteine cathepsins are among the protease classes that have been functionally implicated in cancer. Inhibition of the cysteine cathepsin family using a pan-cathepsin inhibitor, JPM-OEt, led to tumor regression in the RI...

متن کامل

Deficiency for the Cysteine Protease Cathepsin L Impairs Myc-Induced Tumorigenesis in a Mouse Model of Pancreatic Neuroendocrine Cancer

Motivated by the recent implication of cysteine protease cathepsin L as a potential target for anti-cancer drug development, we used a conditional MycERTAM;Bcl-xL model of pancreatic neuroendocrine tumorigenesis (PNET) to assess the role of cathepsin L in Myc-induced tumor progression. By employing a cysteine cathepsin activity probe in vivo and in vitro, we first established that cathepsin act...

متن کامل

Differential Impact of Cysteine Cathepsins on Genetic Mouse Models of De novo Carcinogenesis: Cathepsin B as Emerging Therapeutic Target

Lysosomal cysteine cathepsins belong to a family of 11 human proteolytic enzymes. Some of them correlate with progression in a variety of cancers and therefore are considered as potential therapeutic targets. Until recently, the contribution of individual cathepsins to tumorigenesis and tumor progression remained unknown. By crossing various types of mouse cancer models with mice where specific...

متن کامل

Sensitization to the lysosomal cell death pathway upon immortalization and transformation.

Tumorigenesis is associated with several changes that alter the cellular susceptibility to programmed cell death. Here, we show that immortalization and transformation sensitize cells in particular to the cysteine cathepsin-mediated lysosomal death pathway. Spontaneous immortalization increased the susceptibility of wild-type murine embryonic fibroblasts (MEFs) to tumor necrosis factor (TNF)-me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2006